A Regression-Based Technique for Capacity Estimation of Lithium-Ion Batteries

نویسندگان

چکیده

Electric vehicles (EVs) and hybrid (HEVs) are being increasingly utilized for various reasons. The main reasons their implementation that they consume less or do not fossil fuel (no carbon dioxide pollution) cause sound pollution. However, this technology has some challenges, including complex troublesome accurate state of health estimation, which is affected by different factors. According to the increase in electric vehicles’ application, it crucial have a more reliable estimation charge (SOC) (SOH) environmental conditions. This allows improving battery management system operation optimal utilization pack operating article proposes an approach estimate capacity based on two parameters. First, practical straightforward method introduced assess battery’s internal resistance, directly related remaining useful life. Second, least square algorithm explored. Finally, promising, practical, simple, accurate, technique proposed appropriately. root mean percentage error absolute methods were calculated than 0.02%. It was concluded geometry all advantages recursive manner, fading memory, close form solution, applicable embedded systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

Initial Discharge Capacity of Manganese Cobaltite as Anode Material for Lithium Ion Batteries

Nanostructured manganese cobalt oxide spinel (MnCo2O4) are prepared by co-precipitation method and calcined at 650 and 750°C. Morphological studies show that by increasing the calcination temperature from 650 to 750°C, morphology of the particles changes from quasi-plate to polyhedral. The MnCo2O4 calcined at 650°C could deliver an initial discharge capacity of 1438 mAh g-1 under current densit...

متن کامل

An Effective Nitrogen Doping Technique for Improving the Performance of Lithium Ion Batteries with CNT Based Electrodes

Lithium ion batteries are among the most used rechargeable batteries in the world. Carbon nanostructures including carbon nanotubes (CNTs) are considered as important electrode materials for this kind of batteries. Therefore improving the performance of these carbon based electrodes in Lithium ion batteries is an important issue and attracts much attention in the battery community. In this manu...

متن کامل

Fast Estimation of State of Charge for Lithium-Ion Batteries

This paper presents a novel impedance-based approach to efficiently estimate the state of charge (SOC) of a Li-ion battery. By using an AC impedance analyzer, a database is constructed, containing records of AC impedance versus SOC. In practical applications, the SOC values can be found instantly once the contents of the database are referenced. For validation purposes, AC impedance comparisons...

متن کامل

A Novel Data-Driven Fast Capacity Estimation of Spent Electric Vehicle Lithium-ion Batteries

Fast capacity estimation is a key enabling technique for second-life of lithium-ion batteries due to the hard work involved in determining the capacity of a large number of used electric vehicle (EV) batteries. This paper tries to make three contributions to the existing literature through a robust and advanced algorithm: (1) a three layer back propagation artificial neural network (BP ANN) mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Batteries

سال: 2022

ISSN: ['2313-0105']

DOI: https://doi.org/10.3390/batteries8040031